Decorating unoxidized-carbon nanotubes with homogeneous Ni-Co spinel nanocrystals show superior performance for oxygen evolution/reduction reactions
نویسندگان
چکیده
We present a new concept for homogeneous spinel nanocrystal-coating on high crystalline pristine-carbon nanotubes (CNTs) for efficient and durable oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Oxidized CNTs have widely been used to functionalize with metal or metal oxides since the defect sites act as anchoring for metal oxide binding. However, such defects on the tubes cause the decrease in electrical conductivity and stability, leading to lower catalyst performance. In the present study, at first, pristine multi-walled carbon nanotubes (MWNTs) were wrapped by pyridine-based polybenzimidazole (PyPBI) to which uniform NixCo3-xO4 nanocrystals were homogeneously deposited by the solvothermal method without damaging the MWNTs, in which PyPBI acted as efficient anchoring sites for the deposition of spinel oxide nanocrystals with ~5 nm size. The obtained catalyst (MWNT-PyPBI-NixCo3-xO4) outperformed most state-of-the-art non-precious metal-based bifunctional catalysts; namely, for OER, the potential at 10 mA cm-2 and Tafel slope in 1 M KOH solution were 1.54 V vs. RHE and 42 mV dec-1, respectively. For ORR, the onset and half-wave potentials are 0.918 V and 0.811 V vs. RHE, respectively. Moreover, the MWNT-PyPBI-NixCo3-xO4 demonstrates an excellent durability for both ORR and OER.
منابع مشابه
Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis
Spinel-type oxides are technologically important in many fields, including electronics, magnetism, catalysis and electrochemical energy storage and conversion. Typically, these materials are prepared by conventional ceramic routes that are energy consuming and offer limited control over shape and size. Moreover, for mixed-metal oxide spinels (for example, Co(x)Mn(3-x)O4), the crystallographic p...
متن کاملNickel Oxide/Carbon Nanotubes as Active Hybrid Material for Oxygen Evolution Reaction
Carbon nanotubes are of great interest due to their high surface area and rich edge sites, which are favorable for wide applications. Here, a simple and efficient routine is presented by decoration of multi-wall carbon nanotube (MWCNT) with nickel oxide (NiO) nanoparticles.The morphologies of NiO-MWCNT were investigated by using scanning electron microscope (SEM) and energydispersive X-...
متن کاملCobalt-Based Active Species Molecularly Immobilized on Carbon Nanotubes for the Oxygen Reduction Reaction.
Hybrid systems in which molecule-based active species are combined with nanoscale materials may offer valuable routes to enhance catalytic performances for electrocatalytic reactions. The development of rationally designed, cost-effective, efficient catalysts for the oxygen reduction reaction (ORR) is a crucial challenge for applications in fuel cells and metal-air batteries. A new hybrid ORR c...
متن کاملNickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery.
High-performance, low cost catalyst for oxygen reduction reaction (ORR) remains a big challenge. Herein, nanostructured NiCo2O4/CNTs hybrid was proposed as a high-performance catalyst for metal/air battery for the first time. The well-formed NiCo2O4/CNTs hybrid was studied by steady-state linear polarization curves and galvanostatic discharge curves in comparison with CNTs-free NiCo2O4 and comm...
متن کاملHigh-performance non-spinel cobalt–manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc–air batteries
0.1016/j.nanoen.2 lsevier Ltd. All rig thors. uthor. : [email protected] Abstract Development of efficient bifunctional electrocatalysts from earth abundant elements, simultaneously active for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), remains to be a grand challenge for electrocatalysis. Herein we firstly synthesized a new type of bifunctional catalyst (NCNT/CoxMn1 xO)...
متن کامل